طراحی لرزه مهاربند های واگرا EBF
طراحی لرزه مهاربند های واگرا EBF
اسلایدهای آموزشی طراحی مهاربند واگرا ، توضیح مکانیزم و عملکرد مهاربندهای واگرا، طول تیر پیوند و رفتار تیر فیوز، فواصل سخت کننده ها، مهار جانبی تیرها و….
اسلایدهای آموزشی طراحی مهاربند واگرا ، توضیح مکانیزم و عملکرد مهاربندهای واگرا، طول تیر پیوند و رفتار تیر فیوز، فواصل سخت کننده ها، مهار جانبی تیرها و….
تعیین توزیع دقیق نیرو در یک اتصال مهاربند بسیار پیچیده بوده و براحتی امکانپذیر نیست. زیرا توزیع نیروهای مقطع را نمیتوان با تعادل نیرو به تنهایی تعیین نمود. با توجه به پیچیدگیهای موجود در اتصال مهاربند، حل دقیقی برای آنها وجود ندارد و تمام روشهای طراحی بصورت تقریبی میباشند. در طراحی اتصالات گوشه، چهار روش زیر برای تعیین نیروی منتقله به ستونمتداول میباشد:
روش ساده تورنتون (The KISS (keep it simple, stupid) method (Thornton, 1991; Astaneh-Asl, 1998)).
روش نیروی موازی (The parallel force method (Ricker, 1989; Thornton, 1991; Astaneh-Asl, 1998)).
روش خرپا (The truss analogy method (Astaneh-Asl, 1989)).
روش نیروی یکنواخت (The uniform force method (Thornton, 1991, 1995; Astaneh-Asl, 1998)).
روش KISS یا همان روش ساده تورنتون، اگرچه یکی از روشهای قدیمی برای تحلیل نیرو در ورق مهاربند است، ولیکن هنوز هم مورد استفاده قرار میگیرد. در این روش فرض بر آن است که مولفه افقی نیروی منتقله به ورق توسط اتصال ورق به تیر و مولفه قائم نیروی منتقله به ورق توسط اتصال ورق به ستون تحمل میشود. استفاده از این روش چندان اقتصادی نیست. در هر یک از وجوه اتصال ورق به تیر و ستون، لنگرهای ناشی از خروج از مرکزیت مولفههای افقی و قائم نیروی منتقله در نصف عمق تیر وستون بایستی در نظر گرفته شوند.
نشریه ۲۶۴ ایران (آییننامه اتصالات در سازههای فولادی) چهار روش برای محاسبه توزیع نیروی مهاربند بین تیر و ستونارائه نموده است. براساس تحقیقات AISC (Thornton, 1991) روش نیروی یکنواخت دارای دقت بالایی است. همچنین استفاده از این روش معمولاً منجر به طرح اتصالی اقتصادی خواهد شد. اغلب طراحان از این روش استفاده میکنند.
جزییات مهاربند واگرا که بایستی در طراحی نظارت و اجرا مد نظر قرار بگیرد:
تیر پیوند عضو پلاستیک هست پس هرگونه برشکاری و جوشکاری در ناحیه پیوند به جز سخت کننده جان ممنوع می باشد.
عضو مهاربندی و تیر خارج ناحیه پیوند باید برای حداکثر نیرو طراحی شود تا در طی زلزله در محدوده الاستیک باقی بماند.
از عدم کمانش ورق های اتصال باید اطمینان حاصل کرد.
دوران تیر پیوند باید کنترل شود.
سخت کننده های انتهایی باید دوبل (دو طرف تیر) اجرا شود.
سخت کننده میانی بایستی با دقت بالایی طراحی و اجرا شود.
از عدم چسبیدن بتن دال به جان تیر پیوند باید اطمینان حاصل کرد.
با دتایل مناسب بایستی از کمانش خارج محور تیر پیوند و تیر خارج پیوند جلوگیری کرد.
عضو مهاربندی از سمت تیر به اندازه کافی به تیر نزدیک شود تا ورق اتصال کمانش نکند.
تیر پیوند معمولا دارای مقطعی مشابه با تیر خارج از تیر پیوند است.
تیر پیوند باید از نوع I شکل نورد شده یا ساخته شده از ورق و یا از نوع قوطی ساخته شده از ورق باشد.
وجود نیروهای زیاد در تیر پیوند سبب میشود که تیرهای پیوند جاری شود. البته این مورد بایستی کنترل شود. بدین معنی که تیر خارج از تیر پیوند برای ظرفیت تیر پیوند کنترل شود.
هر چه اندازهی طول تیر پیوند، کوتاهتر باشد، سهم برش در آن بیشتر است و در صورت ورود سازه به محدودهی عملکرد غیرارتجاعی این ناحیه به طور کامل تسلیم میشود. این عمل باعث دورانهای بزرگ غیرالاستیک بدون ایجاد کرنشهای موضعی زیاد خواهد بود. همچنین چون در پیوند برشی (کوتاه)، نیروهای برشی در تمام طول تیر پیوند ثابت است، لذا کرنشهای غیرالاستیک به طور یکنواخت در طول تیر پیوند توزیع میشود. اما اگر طول پیوند زیاد شود، سهم برش آن کم شده و سهم لنگرهای انتهایی آن افزایش مییابد و به جای خمیری شدن کل تیر پیوند در برش، در محل اتصال مهاربند به تیر، مفاصل خمیری خمشی بوجود میآید و عملاً ناحیه تسلیم به شدت کاهش مییابد و به این ترتیب تا قبل از انهدام کل سازه مقدار انرژی کمی با تسلیم شدن قسمت های بسیار محدودی از سازه جذب و مستهلک میشود. ایجاد کرنشهای پلاستیک موضعی بزرگ باعث ایجاد تغییر مکانهای بزرگ و احتمال وقوع ناپایداری و به تبع آن کاهش سختی زیاد در حالت رفتار غیرارتجاعی میگردد. البته آییننامه تنها در حالتی که نیروی محوری تیر پیوند زیاد باشد، طول آن را محدود میکند. علت اصلی این مورد در بند 10-3-12-4 مبحث دهم، کاهش ظرفیت خمشی، در اثر وجود نیروی محوری است.
در مورد فلسفه ی اینکه برای طراحی تیر مهاربند واگرا باید کف متصل به تیر دهانه مهاربندی رو از دیافراگم خارج کرد یه توضیح میدید لطفا .
البته در این حد میدونم که باید نیروی محوری توی تیر در نظر گرفته بشه ولی در مورد علت این موضوع که چرا باید نیروی محوری در تیر وجود داشته باشه اطلاعی ندارم.
و سوال بعدی اینکه بعد از طراحی تیر دهانه مهاربندی ، برای طراحی سایر اعضا و کنترلهای دریفت و نامنظمی و... باید مجددا کفی که از دیافراگم خارج شده بود ، دیافراگم بشه یا نه ؟
وجود نیروی محوری در تیر سبب کاهش ظرفیت خمشی آن می شود. عدم در نظر گرفتن نیروی محوری در تیر و طراحی آن منجر به مقطع کمتری میشود. بعد از طراحی تیر پیوند و تیر خارج از تیر پیوند، طراحی بقیه قسمت ها مهم نیست که دیافراگم داشته باشید یا خیر. بقیه قسمت ها مثل ستون ها و مهاربندها برای ظرفیت تیر پیوند (که قبلا تعیین شده) محاسبه و کنترل میشود
میخواستم بپرسم وقتی base در ارتباط با محاسبه زلزله یک طبقه بالا میاید آیا طبقه پایین در محاسبات مربوط به کنترل دریفت و .... بایستی لحاظ شود یا خیر؟
در این حالت شما احتمالا دیوار حائل داشته اید که تراز پایه را بالا آورده اید. اگر در اینجا در طبقات پایین دریفت حاکم بشود، احتمال زیاد سازه شما شرایط بالا آوردن تراز پایه را نداشته. وقتی دیوار حائل داشته باشیم سختی به میزان قابل ملاحظه ای از بخش رو سازه بیشتر است و معیار جابجایی خیلی بعید است که حاکم شود. اگرچه کنترل آن برای برای تمام طبقات لازم است.
ضریب اضافه مقاومت ( امگا صفر ) که در جدول ضریب رفتار آئین نامه 2800 ویرایش چهارم آمده است به چه منظوری است و در کجا مورد استفاده قرار میگیرد؟؟؟
تجربه نشان داده که کلیه سازهها در برابر بارهای وارده مقاومتی بیشتر از مقاومت طراحی از خود نشان میدهند. دلیل این امر وجود ذخیره مقاومتی قابل توجهی است که در طراحی سازهها لحاظ نشده است، این مقاومت ذخیره به نام مقاومت افزون شناخته میشود و به عنوان یکی از عوامل موثر بر ضریب رفتار، بر ایمنی و اقتصاد طراحی تاثیر گذاشته است. عامل باز توزیع نیروهای داخلی را میتوان برای کاهش نیروهای طراحی مورد استفاده قرار داد. طبق اکثر آییننامههای مدرن طراحی سازههای فولادی، مقدار مقاومت #افزون برای #سیستمهای مهاربندی (طبق مبحث دهم) برابر 2 میباشد (به جدول 10-3-2 مبحث دهم مراجعه نمایید). طبق فلسفه طراحی #لرزهای سازهها، #فیوزهای یک سازه (مکانهایی که قرار است جاری شده و انرژی ورودی زلزله را مستهلک کنند) بایستی ضعیفترین جزء قاب باشند تا بتوانند وظیفه خود را بخوبی انجام دهند. لیکن به دلایل فراوان تمایلی به ایجاد مفصل خمیری در ستونها، اتصالات و برخی نقاط دیگر سازه وجود نداریم. برای در امان ماندن ستونها از جاری شدن (در صورت ایجاد مفصل خمیری در ستونها به سبب نیروی محوری زیادی که دارند احتمال ناپایداری سازه و شکست ترد وجود دارد) بایستی ستونها قویتر از بقیه اجزا طراحی شوند. بدین منظور #آییننامهها بجای طراحی ستونها در سطح نیروی Cs یا Cw، (نیروی تجویز شده از طرف #آییننامه) آنها را برای سطح نیروی Cy طراحی مینمایند. بطور کلی این ضریب در نیروی زلزله طراحی اجزایی که میخواهیم جاری نشوند یا در آخرین مرحله جاری شوند، بکار میرود.
در صورت امکان سوالات زیر را پاسخ فرمایید. 1)مطابق کدام بند آیین نامه جهت کنترل دریفت بایدAJ (ضریب بزرگ نمایی)در نظر گرفته شود.2)در ETABS2015با استفاده از فایل ETABSTran2013میتوانستیم فایل های ایتبز9.7.4را باز خوانی کنیم ولی درETABS2016نمیشود.برای حل مشکل چه باید بکنیم؟
1- در متن 2800 گفته شده جابجایی طبقه بایستی برای نیروی زلزله طرح انجام شود. زلزلههای دارای خروج از مرکزیت هم جزو این حالات باز زلزله طرح هستند.
آیا لازم است، تیر تقویت شده با ورق (BU I Cover Plate) را، فایل XML تعریف و معادل سازی کرد ؟
سلام. خیر نیازی به معادل سازی نیست. با استفاده از مسیر Define menu > Section Properties > Frame Sectio و و انتخاب BU I Cove Plate (Built-up I Section with Cover Plates) میتوانید مقاطع پروفیل با ورق تقویتی را ایجاد نمایید. در کلیپ زیر این مورد بطور مختصر نشان داده شده است.
با اجازتون یک سوالی برای من بوجود آمد منظور از فروشگاه های کوچک و خرده فروشی با فروشگاه های عمده فروشی که در جدول 6-5-1 (حداقل بارهای زنده) مبحث ۶ عنوان شده چیست؟ فروشگاه عمده فروشی چه شاخصه ای در زمان انتخاب بار زنده نسبت به فروشگاه خرده فروشی دارد مثلا کارفرما ها با دید ساخت ساختمان تجاری می آیند و نسبت به خرده فروشی و عمده فروشی دیدی ندارند و تفاوتی احساس نمی کنند، ممنون می شم راهنماییم فرمایید
عمدهفروشی(Wholesale) جایی است که فروش کالا یا اجناس به خردهفروشان، کاربران صنعتی، بازرگانی یا دیگر کاسبان حرفهای، یا به دیگر عمدهفروشان و خدمات مرتبط است. بطور کلی، عمدهفروشی، فروش کالا به هر کس و به هر مقدار به استثنای مصرفکننده نهایی میباشد. خردهفروشی (Retail) شامل فروش کالاها و اجناس فیزیکی برای مصرف مستقیم توسط خریدار است که از محلی معین، همچون فروشگاه یا مرکز خرید، در قالب بخشهای کوچک یا منفرد تهیه شده باشد. اکثر سازههای تجاری در رده خرده فروشی قرار دارند. برای توجیه بیشتر به عکسهای زیر توجه شود.
سلام مهندس. وقت شما بخیر. دو تا سوال داشتم که ممنون میشم پاسخ بدید.
1-اگر قرار باشه یک سازه فولادی به روش LRFD و تحلیل دینامیکی طیفی طراحی کنیم
حتما باید در طراحی از ترکیبات بار دینامیکی سازه فولادی به روشLRFD استفاده کنیم؟؟؟ اگر در این روش
علاوه بر ترکیبات دینامیکی ترکیبات استاتیکی هم باشه مشکلی وجود داره؟؟؟
2-ایا در روش سازه فولادی به روش LRFD بارهای ناشاقولی با علامت مثبت و منفی هم باید حضور داشته باشن؟؟؟
چون عنوان میشه طراحی دینامیکی ماهیت رفت و برگشتی داره این سوال رو پرسیدم.
فرقی ندارد که سازه را به چه روشی (LRFD یا ASD) طراحی میکنید. اگر نیاز به تحلیل دینامیکی دارد، در طراحی دیگه نیازی به اضافه کردن حالات بار استاتیکی (به غیر از ترکیب بارهای ثقلی) نیست. زیرا توزیع بار زلزله دینامیکی دقیقتر بوده و همپایه سازی نیز با برش پایه استاتیکی نیز صورت خواهد گرفت. اضافه کردن ترکیب بارهای شامل بار زلزله استاتیکی ممکن سبب طراحی محافظه کارانه گردد.
بارهای ناشاقولی باید هم علاومت در یک ترکیب بار وارد شوند (همه یا مثبت یا منفی) تا بیشترین اثر ایجاد شود
برخی از اساتید و مهندسان ضریب اومگا و یا نامعینی را در ضریب زلزله ضرب میکنند این عمل درست هست ویا در loade case هم ضرب میکنند من این کارو انجام دادم برش پایه به اندازه ضریبی که اعمال کردم افزایش یافت و با توجه به اینکه اعمال ضریب نامعینی و اومگا در نرم افزار در قسمت طراحی می باشد یعنی وقتی ما در قسمت تنظیمات ایین نامه ضریب اومگا و نامعینی را اعمال میکنیم در برش پایه و نتایج تحلیل تغییری ایجاد نمیشه ودر طراحی تغییراتی ایجاد میشه این سوال برام پیش اومد که ما فقط میتونیم در ترکیبات بار اعمال کنیم این ضرایب را نه در ضریب زلزله و loade case کنیم یعنی خود نرم افزار در قسمت طراحی این ضررایب را تنظیم میکند نه در تحلیل این درست هست یا نه ؟ و توضیح کاملی در مورد این مطلب بفرمایید خیلی ممنون
درستش اینه که در ترکیب بارها ضرب کنید. اعمال این ضریب ها در ضریب زلزله باعث ایجاد محافظه کاری در طراحی میشود. مثلا اثرات ناشی از P-Delta که نیازی نیست در ضریب Rho ضرب شود و یا در کنترل جابجایی سازه، نیازی به اعمال ضریب نامعینی نیست.
نکاتی در مورد ETABS:
برنامه ETABS در صورت استفاده از آییننامه AISC360-05 یا بالاتر و انتخاب نوع قاب EBF موارد زیر را برای مهاربندهای واگرا کنترل می کند:
اگر تحت ترکیب بارهای معمولی نیروی محوری ستونها از 0.4 ظرفیت فشاری یا کششی آنها فراتر رود، ترکیب بارهای ویژه تشدید یافته بایستی بدون حضور لنگر خمشی و نیروی برشی و تنها تحت اثر نیروی محوری کنترل شوند(AISC SEISMIC 8.3, 4.1).
مقاطع تیرها باید فشرده لرزهای باشند (AISC SEISMIC 13.2d, 8.2b, Table I-8-1). در صورت عدم ارضای شرایط این جدول، پیام خطایی در خروجی اعلام میشود.
مقاومت برشی تیر پیوند باید از برش ضریبدار وارد بر آن بزرگتر باشد (AISC SEISMIC 15.2b). برنامه طراحی تیر پیوند را با استفاده از روابطی به مانند روابط مبحث دهم، کنترل میکند.
دوران تیر پیوند، نسبت به کل تیر دهانه بادبند واگرا از روی جابجایی نسبی طبقه (جابجایی کلی بالای ستون منهای جابجایی کلی پایین ستون) بدست میآید. برنامه دوران تیر پیوند را تحت بدترین ترکیب بار کنترل و گزارش میدهد.
تیر خارج از تیر پیوند بایستی برای 1.1Ry برابر مقاومت تیر پیوند طراحی شود (AISC SEISMIC 15.6b). برنامه این کنترل را انجام میدهد.
مقاطع ستونها باید فشرده لرزهای باشند (AISC SEISMIC 13.2d, 8.2b, Table I-8-1). در صورت عدم ارضای شرایط این جدول، پیام خطایی در خروجی اعلام میشود.
تمام مهاربندها بایستی فشرده باشند (AISC SEISMIC 10.4a, 8.2a, AISC Table B4.1). در صورت عدم ارضای شرایط این جدول، پیام خطایی در خروجی اعلام میشود.
مهاربندها برای 1.25 برابر ظرفیت برشی تیر پیوند طراحی میشوند. ابتدا نیروی محوری مهاربند که با 1.25 ظرفیت مورد انتظار تیر پیوند است بدست میآید. سپس نیروی حاصل جایگزین بار زلزله در ترکیب بارها شده و با اثر بارهای ثقلی جمع میشوند (ASIC SEISMIC 15.6a).
در طراحی ستونها باید ترکیب بار ویژهای که در آن ستونها باید برای 1.1Ry برابر ظرفیت برشی تیر طراحی شود در نظر گرفته شود. ضریب 1.1 برای در نظر گرفتن اثرات سخت شوندگی کرنشی است.
برای مهاربندهای همگرا، فشردگی تیرها و ستونها و مهاربندها و همچنین طراحی ستونها با استفاده از ترکیب بارهای تشدید یافته صورت گرفته و طراحی ظرفیتی انجام نمیشود.
منبع: کانال آقای امین قلیزاده