وبلاگ آموزش Etabs و طراحی سازه

آموزش و تدریس ایتبز Etabs - تحلیل و طراحی سازه های فولادی و بتنی

آموزش و تدریس ایتبز Etabs - تحلیل و طراحی سازه های فولادی و بتنی



مهندس علیرضا خویه

کارشناس ارشد مهندسی عمران- زلزله
AliReza Khooyeh
, M.Eng in Earthquake engineering
دانشگاه صنعتی خواجه نصیرالدین طوسی تهران
from KNTU ,IRAN

مهندس محاسب و مدرس دوره های تخصصی مهندسی عمران
Structural engineer & teacher of civil engineering courses

دارای 5 سال سابقه ی طراحی و اجرای سازه
Over 5 years of technical experience in structural analysis, design, and construction

انجام محاسبات مقاوم سازی و بهسازی سازه ها و ارائه راهکارهای مناسب
Provide appropriate solutions for strengthening and retrofit of structures

-------------
تماس:
09382904800
Khooyeh@Live.com

آموزش و تدریس



Instagram
آخرین مطالب

۲۰ مطلب در تیر ۱۳۹۶ ثبت شده است

کانال آموزشی Etabs

کانال مفید و آموزشی دکتر علیرضایی را به همه ی مهندسانی که عطش یادگیری Etabs را دارند، شدیدا توصیه می کنم

آدرس کانال: https://t.me/AlirezaeiChannel

 

 

تحلیل حرارتی در Etabs

بارهای حرارتی وقتی که ابعاد سازه شما (یکی از اضلاع سازه) زیاد باشد، اثر تغییر شکل‌های ناشی از حرارات محیط افزایش یافته و بایستی اثر باری تحت این تغییر درجه حرارت سازه تحمل می‌کند را برای طراحی در نظر گرفت. نمونه بارز این مسئله در ریل راه آهن است که در قدیم برای اثرات انبساط در ریل آنها را به قطعاتی تقسیم می‌نمودند و با فاصله کمی از هم قرار می‌گرفت. در یک سازه با اضلاع طولانی نیز می‌توان از همین روش استفاده نمود و سازه را به بخش‌هایی تقسیم نمود تا اثر تغییرشکل‌ها محدود شود. فاصله بین دو سازه باید به میزان جابجایی ایجاد شده ناشی از دو سازه تحت تغییرات دما باشد. در صورتی که درز انبساط در نظر گرفته نشود، آنگاه بایستی سازه برای اثرات از بارهای حرارتی طراحی شود. طبق مبحث ششم، اثرات ایجاد شده ناشی از این بارهای حرارتی بایستی توسط دو ترکیب بار شماره 8 و 9 از ترکیب بارهای سازه‌های فولادی صفحه 16 و از ترکیب بارهای 6 و 7 سازه‌های بتنی صفحه 15 استفاده نمود. توصیه ASCE7-10 برای بارهای حرارتی به این صورت بوده و دو ترکیب بار زیر را پیشنهاد می‌دهد که مشابه مبحث ششم است:


❗️ When self-straining loads are combined with dead loads as the principal action, a load factor of 1.2 may be used. However, when more than one variable load is considered and self-straining loads are considered as a companion load, the load factor may be reduced if it is unlikely that the principal and companion loads will attain their maximum values at the same time. The load factor applied to T should not be taken as less than a value of 1.0.
When using strength design:

همپایه کردن شتاب نگاشت ها در تحلیل تاریخچه زمانی

قبل از اعمال شتابنگاشت‌ها به سازه بایستی آنها را #همپایه نمایید. بدین معنی که قدرت آنها تقریباً در سطح طیف ارتجاعی استاندارد قرار گیرد تا مقایسه آنها امکان پذیر باشد. آیین نامه الزام میکند، در محدود 0.2T تا 1.5T بایستی همپایه سازی انجام شود. لیکن توضیح واضحی در ارتباط با T نمیدهد. مقدار T دوره تناوب اصلی سازه است. بند معادل در ASCE7-10 نیز بصورت زیر است:


16.1.3.2 Three-Dimensional Analysis
“For each pair of horizontal ground motion components a square root of the sum of the squares (SRSS) spectrum shall be constructed by taking the SRSS of the 5-percent damped response spectra for the scaled components (where an identical scale factor is applied to both components of a pair). Each pair of motions shall be scaled such that for each period in the range from 0.2T to 1.5T, the average of the SRSS spectra from all horizontal component pairs does not fall below the corresponding ordinate of the design response spectrum, determined in accordance with Section 11.4.5 or 11.4.7.”

 


مقادیر میانگین به میزانی تغییر داده شوند که برای دوره تناوب در محدوده 0.2T تا 1.5T مقدار متوسط طیف جذر مجموع مربعات مربوط به تمام زوج شتابنگاشت ها بیش از 10% از 1.3 برابر طیف استاندارد کمتر نشود. به عنوان مثال در شکل زیر اگر دوره تناوب سازه T=1.5 sec باشد، بایستی این عملیات در محدوده T=0.3 sec تا T=2.25 sec صورت گیرد. مقادیر میانگین تا جایی کاهش یافته‌اند که از بیشتر از 10% از 1.3 برابر #طیف استاندارد کمتر نشود. بنابراین اگر مقادیر طیف #میانگین شما از 1.3 برابر #طیف #استاندارد بالاتر بود، باید آنها را کاهش دهید.

 

 

منبع:
@AlirezaeiChannel

محل مناسب مهاربندها

در قاب‌های مهاربندی شده همگرا، نیروهای طراحی به شدت به تعداد و مکان قرار گرفتن مهاربندها بستگی دارند. بهتر است

دهانه‌ای برای قاب مهاربندی شده انتخاب گردد که اولا بار ثقلی مناسبی روی ستون متصل به مهاربند وجود داشته باشد (دهانه‌های لبه‌ای چندان مناسب نیستند)

دوم آنکه دهانه طوری انتخاب شود که حتی المقدور زاویه مهاربند 45 در بیاید. مثلاً برای سازه‌های متعارف با ارتفاع طبقه حدود 3 متر، دهانه‌های 3 تا 4 متری برای مهاربندهای قطری و ضربدری و دهانه‌های 5 تا 6 متری برای مهاربندهای هشتی و هفتی مناسب هستند.

علاوه بر دهانه عمق تیر و ستون نیز مهم است. در شکل‌های زیر چند نمونه دتایل با مقیاس که در آنها ابعاد تیر و ستون و زاویه مهاربند متفاوت هستند، نشان داده شده است. در شکل اول تیرها دارای عمق زیادتری نسبت به ستون‌ها هستند. در این حالت، در صورتی که زاویه مهاربند با افق کم باشد، ابعاد ورق بسیار بزرگ خواهد شد. در صورت زاویه زیاد مهاربند، ابعاد ورق‌ها منطقی‌تر خواهد بود. همانطور که از شکل دوم دیده می‌شود، در صورتی که ابعاد تیر و ستون تقریبا برابر باشند، بهترین زاویه برای ورق، در زاویه مهاربند برابر 45 درجه رخ می‌دهد.

 

 

 

 

 

@AlirezaeiChannel

تفاوت روش CQC و SRSS در تحلیل دینامیکی طیفی

در آنالیز طیفی، پاسخ نهایی سازه با استفاده از ترکیب مودهای مختلف آن بدست آورده می شود.  در واقع پاسخ سازه به صورت ترکیبی از شکل‌های مودی مختلف است. برای هر مود در نظر گرفته شده، بر اساس فرکانس و جرم مودی، پاسخ آن مود از طیف طراحی استخراج شده و سپس با پاسخ مودهای دیگر ترکیب می شود تا پاسخ کلی سازه را نتیجه دهند. فرض کنید می خواهیم دو مود را در آنالیز طیفی با یکدیگر ترکیب نماییم، برآیند آنها به صورت زیر خواهد بود:


R^2 = R1^2 + 2*epsilon*R1*R2 + R2^2


در رابطه بالا حد نهایت پاسخ هنگامی خواهد بود که epsilon=1 باشد، این دقیقا مانند اینست که پاسخ دو مود را به طور کامل با یکدیگر جمع کنیم:

R^2 = R1^2 + 2*R1*R2 + R2^2

R = R1 + R2

که در عمل همان قدر مطلق جمع دو پاسخ فوق خواهد بود:

R = |R1| + |R2|

روند فوق یک عمل بسیار محافظه کارانه است. حال تصور کنید epsilon=0 باشد، که رابطه بیان شده را تبدیل به همان روش SRSS می کند:

R^2 = R1^2 + R2^2

R = SRSS(R1, R2)

 

از آنجایی که حاصلضرب عبارت R1*R2  در این روش صفر فرض می شود بنابراین به گونه ای از اندرکنش مودی در SRSS صرف نظر می کنیم. از طرف دیگر در روش CQC  از epsilon بین صفر و یک برای بدست آوردن پاسخ استفاده می شود یعنی پاسخی مابین روش SRSS و جمع مطلق مستقیم  بدست خواهیم آورد. در واقع روش CQC مقداری از اندرکنش مودی را برای مدهای نزدیک بهم لحاظ می کند و دلیل آن اینست که چنین مودهایی ممکن است با یکدیگر اندرکنش در فاز داشته باشند، بنابراین برای مودهای نزدیک بهم می بایست به صورت جبری (بدون استفاده از قدر مطلق) عمل نمود ، در حالیکه برای مودهای دور از هم می توان از روشی مانند SRSS استفاده کرد. بدلیل اینکه روش CQC دارای علامت جبری هستند نباید همیشه آنها را محافظه کارانه تر از SRSS در نظر گرفت بلکه بسته به علامت جبری روشهای CQC می توانند محافظه کارانه تر و یا غیر محافظه کارانه تر از SRSS باشد. بطور کلی بهتر است همیشه از روش CQC استفاده نماییم.

 

منبع: 
http://www.eureka.im/5132.html
@AlirezaeiChannel

دلایل اختلاف زیاد بین برش پایه استاتیکی و طیفی

دلایل اختلاف زیاد بین برش پایه استاتیکی و طیفی

 

اگر طیف بی بعد شده B را از مسیر Define menu > Functions > Response Spectrum تعریف نموده‌اید و سپس اقدام به تعریف حالت بار طیفی با ضریب مقیاس AI/R کرده‌اید، نبایستی پراکندگی زیادی با برش پایه استاتیکی ایجاد شود. اگر 100 برابر برش‌های پایه استاتیکی و دینامیکی با هم اختلاف دارند، به احتمال زیاد خطای عددی یا خطای مدلسازی دارید و موارد زیر را کنترل نمایید:


1- کنترل کنید که تعداد مودهای نوسانی در نظر گرفته شده حداقل 90% جرم را جذب کرده باشد. در مواردی که تغییرات زیاد سختی در ارتفاع داشته باشید (مثل حالتی که در طبقاتی دیوار حائل وجود داشته باشد) نیاز به مودهای نوسانی زیادتری از حالات معمول داریم. برای تعریف مودهای ارتعاشی باید از مسیر Define menu > Modal Cases اقدام نمایید.


2- کنترل کنید که ضریب مقیاس را درست وارد کرده باشد و حتما آن را براساس واحد برنامه وارد نمایید. مثلا ممکن است که واحد شتاب برنامه mm/sec^2 بوده و شما مقدار g (شتاب ثقل) را بر اساس واحد m/sec^2 برابر 9.81 وارد کرده باشد که در این حالات 1000 برابر ضریب مقیاس کم بدست می‌آید و یا مثلا ضریب مقیاس بر اساس cm/sec^2 بوده و شما آن را 9.81 وارد کرده‌اید که ضریب مقیاس 100 برابر کمتر حاصل می‌شود.


3- ناپایداری‌های سازه را بررسی کنید. سازه نباید در بخشی از آن دارای سختی ناچیز باشد.


4- جرم سازه را کنترل کنید.

 

@AlirezaeiChannel

گاست پلیت مستطیلی یا ذوزنقه ای

 ورق اتصال مهاربند در صورتی که کمانش مهاربند داخل صفحه رخ دهد می‌تواند بصورت مستطیلی باشد و نیاز به ارائه جزئیات خاص در آن نیست. ولیکن در حالتی کمانش مهاربند خارج صفحه رخ می‌دهد بایستی ورق بصورت ذوزنقه‌ای بریده شود تا امکان در نظر گرفتن 2t برای کمانش مهاربند فراهم شود. ابعاد آن به عوامل متعددی از جمله عمق تیر، عمق ستون، زاویه مهاربند و ... بستگی دارد. برای دیدن جزئیات و نحوه بریدن ورق اتصال می‌توانید به یکی از دو مرجع زیر مراجعه کنید:
- Abolhassan Astaneh-Asl, Michael L. Cochran; "Seismic Detailing of Gusset Plates for Special Concentrically Braced Frames"
-تحلیل و طراحی سازه‌های فولادی؛ تالیف دکتر بهرخ حسینی هاشمی، مهدی علیرضایی؛ فصل 14 بخش 5

 

 

@AlirezaeiChannel

فولد لاین یا خط آزاد خمش در گاست پلیت

 

 

ایجاد فاصله 2t به عنوان خط فرضی خمش جهت رفتار مفصلی در مهاربندهای همگرای معمولی نیازی نیست و تنها در مهاربندهای همگرای ویژه اجبار وجود دارد. در مهاربندهای همگرای ویژه نیز تنها در حالتی که کمانش مهاربند خارج صفحه رخ دهد، این الزام وجود دارد و در حالتی که کمانش داخل صفحه باشد باز نیازی نیست. برای دیدن جزئیات بیشتر می‌توانید به کتاب تحلیل و طراحی سازه‌های فولادی اینجانب مراجعه کنید.  اعمال این فاصله برای مهاربندهای واگرا اصلا نیازی نیست زیرا در این قاب عضو مهاربند نبایستی دچار کمانش شود.

 

@AlirezaeiChannel

سخت کننده های گاست پلیت

در برخی اوقات که طول لبه آزاد ورق زیاد باشد، نیاز به سخت کننده‌هایی عمود بر این ورق اتصال می‌باشد. در این حالت بایستی توجه داشت که این سخت کننده‌ها نبایستی از ناحیه نوار مفصل خمیری ورق عبور داده شوند. زیرا در صورت عبور از این ناحیه، مانع دوران ورق اتصال شده و کار مفصل خمیری و خط فرضی خمش را مختل می‌کنند. همچنین توصیه شده انتهای این سخت کننده‌ها نیز با فاصله‌ای به میزان دو برابر ضخامت ورق (2t) نرسیده به خط فرضی خمش، قطع شوند. در شکل زیر این مورد نشان داده شده است.

 

 

کاهش لرزش سقف عرشه فولادی

چند نکته قابل توجه جهت کاهش لرزش سقفهای عرشه فولادی :
1- فاصله دهانه های تیرهای فرعی در سقف عرشه فولادی

یکی از مهمترین عوامل در کاهش لرزش سقف عرشه فولادی فواصل تیرهای فرهی می باشد ، اگر فاصله تیرهای فرعی کمتر از 2/40 متر باشد با اجرای ورق عرشه به ضخامت 0/8 میلیمتر هیچ لرزشی در سقف نخواهیم داشت ، برای فواصل بیشتر باید ضخامت ورق را افزایش دهیم : یعنی دهانه 2/40 تا 2/60 از ورق 0/9 میلیمتر و از 2/60 تا 3/00 متر از ورق 1 میلیمتر و از 3/00 تا 3/30 از ورق 1/25 میلیمتر استفاده گردد ، فاصله تیر فرعی بیشتر از 3/30 به هیچ عنوان توصیه نمیگردد ، کما اینکه دستگاه های تولید ورق رول فرمینگ توان فرم دادن ورق با ضخامت بیشتر از 1/25 میلیمتر را ندارند

2- ضخامت ورق گالوانیزه سقف عرشه فولادی 
همانگونه که گفته شد انتخاب ورق با ضخامت نادرست با توجه به فواصل تیرریزی نیز از عوامل موثر در لرزش سقف ساختمان خواهد بود.

3- ارتفاع عرشه

ارتفاع عرشه یا بلندای گام ورق نیز تاثیر به سزایی در کاهش لرزش سقف دارد ، توصیه ما در هر فاصله دهانه ای استفاده از ورق عرشه با بلندای گام 75 میلیمتر می باشد .


4- بتن ریزی

بر طبق ضوابط مبحث دهم مقررات ملی ساختمان، حداقل ضخامت بتن بر روی گام فوقانی ورق عرشه فولادی در حدود ۵ سانتیمتر می باشد. هر چند که در عمل ۶ سانتیمتر نتیجه مطلوب تری حاصل شده است، اما بتن ریزی کمتر از ۵ سانتیمتر در افزایش لرزش سقف موثر است .


5-  اجرای صحیح عرشه

فیکس کردن ورق با میخ و چاشنی انفجاری ، در فواصل مناسب ( برای هر متر مربع حداقل از 2 عدد میخ و چاشنی انفجاری استفاده گردد ) و استفاده از پیچ های خودکار در محلهای مورد نیاز ، نیز در کاهش لرزش سقف کمک میکند


رابطه عرض مفید فرمینگ ورق عرشه فولادی و لرزش سقف عرشه فولادی:

مطابق آئین نامه مقررات ملی ساختمان ایران مبحث دهم در صفحه ۱۲۶ بند ۱۰-۲-۸-۳-۳ :

ت) انتقال بار بین تیر فولادی و دال بتنی
ت-۱) نواحی لنگر خمشی مثبت

۱. مقاومت برش افقی مورد نیاز: برای عملکرد مختلط کامل، برش افقی مورد نیاز باید به شرح زیر برابر کوچکترین مقدار محاسبه شده بر اساس حالتهای حدی خردشدگی بتن و تسلیم کششی مقطع فولادی در نظر گرفته شود.

خرد شدگی بتن (۱۰-۲-۸-۲۰)
Vhu=0.85fcAc

تسلیم کششی مقطع فولادی (۱۰-۲-۸-۲۰)

در روابط فوق:
fc= مقاومت فشاری مشخصه نمونه استوانه ای بتن
Ac=سطح مقطع دال بتنی در محدوده عرض موثر ورق عرشه فولادی
As=مساحت مقطع فولادی
Fy=تنش تسلیم فولاد مقطع فولادی

۲. مقاومت برش افقی اسمی مقاومت برش افقی اسمی اعضای با مقطع مختلط بر دال بتنی و دارای برشگیر (گلمیخ) باید مطابق رابطه زیر بر اساس مقاومت برشی برشگیرها تعیین گردد. (۱۰-۲-۸-۲۱)

که در آن:
Qn=مجموع مقاومت های برشی اسمی برشگیرها (گلمیخ ها)در حد فاصل نقاط لنگر خمشی مثبت حداکثر و لنگر صفر مطابق مقررات بند ۱۰-۲-۸-۷ ۳.تعداد فاصله و مشخصات برشگیرها (گلمیخ ها)بایستی از طریق برقراری رابطه زیر و بدون احتساب ضریب کاهش مقاومت تعیین گردد. (۱۰-۲-۸-۲۲)

نتیجه گیری:

با توجه به اینکه مقدار خرد شدگی بتن کمترین مقدار در روابط فوق میباشد لذا هر چه سطح مقطع دال بتنی در محدوده عرض موثر ورق عرشه فولادی بیشترو مطابق استانداردها باشد مقاومت سقف عرشه فولادی در مقابل زلزله نیز بیشتر می شود.

بارگذاری مثلثی روی صفحات

 برای اعمال بار با توزیع غیر یکنواخت بر سطوح در برنامه ETABS می‌توان از ترفندها مختلفی استفاده نمود. معمولا از این توزیع غیر یکنواخت برای اعمال بارهای جانبی خاک استفاده می‌شود. یک راه اولیه و ساده این است که دیوار را در ارتفاع مشبندی نموده و به هر قطعه از مش آن متوسط بار گسترده در مرکز آن مش اعمال شود.

 

این روش یک روش ساده و تقریبی بوده که دقت آن به تعداد مش‌ها بستگی دارد. روش دوم که بصورت دقیق می‌باشد، برای این منظور بعد از انتخاب دیوار باید از مسیر Assign menu > Shell Loads > Non-uniform اقدام نمایید.البته بایستی قبلا باری که می‌خواهید به دیوار اختصاص دهید را از مسیر Define menu > Load Pattern ساخته باشید.

 

در کادر نشان داده شده گزینه Direction جهت اعمال بار را مشخص می‌کند. در بخش Non-uniform Load می‌توان الگوی بارگذاری غیر یکنواخت را تعیین نمود. در این بخش x، y و z بر حسب سیستم مختصات کلی بیان می‌شوند. مقدار A بیانگر بزرگی مقدار نیرو بر واحد طول موازی با محور X است. مقدار B بیانگر بزرگی مقدار نیرو بر واحد طول موازی با محور Y است. مقدار C بیانگر بزرگی مقدار نیرو بر واحد طول موازی با محور Z است.

 

@AlirezaeiChannel

عدم کنترل های لرزه ای توسط Etabs

 جهت عدم کنترل ضوابط لرزه‌ای، باید در بخش تنظیمات آیین‌نامه‌ای گزینه Seismic Design Category را در یکی از حالات A، B یا C قرار داده و همچنین عدد مقابل System R را عددی کمتر مساوی 3 قرار دهید تا ضوابط لرزه‌ای کنترل نشود.

اگر گزینه Ignore Special Seismic Load? را در حالت Yes قرار دهید تنها از ترکیب بارهای تشدید یافته صرف نظر می‌شود. البته هر یک از مواردی که صرف نظر میکنید باید بصورت دستی کنترل شود.

مش بندی Mesh سقف

مشبندی را می‌توانید به دو صورت انجام دهید. یا از همین روش که فرمودین بصورت دستی با انتخاب سقف و استفاده از مسیر Edit menu > Edit Shells > Divide Shells آن را مشبندی کنید. در کادر ظاهر شده گزینه‌ها مختلفی برای مشبندی وجود دارد. یا اینکه از مسیر Assign menu > Shell > Floor Auto Mesh Options آن را بصورت خودکار مشبندی نمایید.

 

در این حالت برای دیدن ابعاد و مشبندی انجام شده باید از مسیر View menu > Set Display Options گزینه Shell Analysis Mesh را تیک بزنید تا دیدن دیدن مشبندی امکان پذیر شود.

 


@AlirezaeiChannel

کنترل زلزله بهره برداری در حالت حدی

 برای کنترل زلزله بهره برداری در حالت حدی در نرم افزار ترکیب بارها همگی با ضریب یک وارد میشود و ضرایب کاهش مقاومت نیز یک می شود و سازه کنترل میشود.همچنین تغییر مکان جانبی نسبی نیز از 0.005 ارتفاع طبقه بیشتر نشود.

ساختمانهای «با اهمیت خیلی زیاد و زیاد» و یا بلندتر از 50 متر و یـا بیشـتر از 15 طبقه باید برای زلزله سطح بهره برداری کنترل شوند، به طوری که، مطـابق تعریـف بند (1-1-2)قابلیت بهره برداری خود را در زمان وقوع زلزلـه حفـظ نماینـد. بـرای ایـن منظور مشخصات سازه این ساختمانها باید چنان باشد که تحـت اثـر ترکیـب بارهـا در سطح بهره برداری، بدون اعمال ضریب بار، الزامات زیر را تأمین نمایند.
1) در زلزله سطح بهره برداری نباید تنش های  ایجاد شده در اعضای فولادی از حد فرا ارتجاعی  اعضا تجاوز نماید.

2) در طراحی سازه های بتن مسلح تلاشهای ایجاد شده در اعضا نباید از مقاومت اسمی آنها(بدون اعمال ضریب کاهش مقاومت) فراتر رود.

3) در کنترل زلزله سطح بهره برداری برای سازه های بتن مسلح میتوان مقدار ممان اینرسی  موثر اعضا سازه را تا 1.5 برابر مقادیر متناظر با زلزله طرح در نظر گرفت.

4) منظور از تغییر مکانی که عرض کردید  از یک تحلیل خطی بدست می اید و برای محاسبه آنها میتون از اثر p delta صرف نظر کرد.

5) در مواردی که نوع و نحوه بکارگیری مصالح و سیستم اتصال قطعات غیرسازه ای(مانند تیغه بندی داخل ساختمان) به گونه ای باشد که که این قطعات بتوانند در برابر تغیر مکانهای جانبی نسبی بیش از 0.005 ارتفاع طبقات بدون خسارت بماند میتوان این عدد را تا 0.008 افزایش داد.

6) مشخصات حرکت زمین در زلزله سطح بهرهبرداری باید مشابه زلزله طرح، بنـد 
(3-3)در نظر گرفته شود، با این تفاوت که شتاب مبنای طرح A در آن بـه یـک ششـم مقدار خود کاهش داده شود. در مقابل ضریب رفتار R در محاسبه نیـروی جـانبی زلزلـه برابر با یک منظور میگردد. به این ترتیب در روش تحلیل استاتیکی معادل مقـدار بـرش پایه در این سطح از رابطه (3-16)محاسبه میشود.

Vser=1/6 ABIW                    (3_16)

معرفی سیستم سقف ها

سیستم سقف ها را بصورت خلاصه بشناسید

1-سقف طاق ضربی :
هرچند که این نوع سقف منسوخ شده است و دیگر مورد تایید ضوابط وآیین نامه ها نیست.سقف طاق ضربی به راحتی و با هزینه کم ساخته میشود.اما بدلیل وزن بالا و عملکرد بسیار ضعیف درهنگام زلزله ،سقف قابل اعتمادی نیست.

2-سقف تیرچه بلوک :
این نوع سقف یکی از رایج ترین انواع سقف به حساب می آید. اجزای تشکیل دهنده سقف تیرچه – بلوک شامل تیرچه ، بلوک پرکننده و بتن وآرماتورحرراتی وآرماتور تقویتی برش (اوتکا ) می باشد.
انواع تیرچه :
الف ) تیرچه پاشنه بتنی
ب) تیرچه فلزی با جان باز( کرمیت )
ج) تیرچه پیش تنیده ( اشپنیت )
د)تام تیرچه
انواع بلوک پرکننده:
الف ) بلوک پلی استایرن
ب) بلوک سفالی
ج) بلوک سیمانی

3-سقف کامپوزیت :