وبلاگ آموزش Etabs و طراحی سازه

آموزش و تدریس ایتبز Etabs - تحلیل و طراحی سازه های فولادی و بتنی

آموزش و تدریس ایتبز Etabs - تحلیل و طراحی سازه های فولادی و بتنی



مهندس علیرضا خویه

کارشناس ارشد مهندسی عمران- زلزله
AliReza Khooyeh
, M.Eng in Earthquake engineering
دانشگاه صنعتی خواجه نصیرالدین طوسی تهران
from KNTU ,IRAN

مهندس محاسب و مدرس دوره های تخصصی مهندسی عمران
Structural engineer & teacher of civil engineering courses

دارای 5 سال سابقه ی طراحی و اجرای سازه
Over 5 years of technical experience in structural analysis, design, and construction

انجام محاسبات مقاوم سازی و بهسازی سازه ها و ارائه راهکارهای مناسب
Provide appropriate solutions for strengthening and retrofit of structures

-------------
تماس:
09382904800
Khooyeh@Live.com

آموزش و تدریس



Instagram
آخرین مطالب

فایل Etabs برج دوقلو ۶۰ طبقه با ۲۰۰

امروز با فایل Etabs برج دوقلو ۶۰ طبقه با ۲۰۰ متر ارتفاع در خدمت شما مهندسین عمران هستیم. این پروژه به علت سنگین بودن بسیار زیاد این فایل به گفته طراح  از یک ابر کامپیوتر استفاده شده است . هدف  از این کار داشتن منبعی برای دانشجویان و طراحان گرامی می باشد چرا که طبق آیین نامه ۲۸۰۰ در هیچ کجای ایران نباید سازه ای به بلندی بالای ۲۰۰ متر طراحی شود مگر با اجازه کمیته بازنگری آیین نامه ۲۸۰۰ . و طرح بنده حد نهایی این آیین نامه (از لحاظ ارتفاع) می باشد . در ادامه مشخصات این برج و لینک دانلود فایل کامل Etabs این پروژه موجود است

فایل Etabs برج

برخی از مشخصات برج :
۱) مساحت زیر بنای هر طبقه ۱۶۰۰۰ متر مربع
۲) سیستم مهاربندی در دوطرف قاب خمشی ویژه فولادی
۳) ساختمان دارای دو هسته مرکزی

۴) ساختمان دارای یک پل رابط در طبقه رستوران

۵) سقف از نوع کرمیت
۶) فولاد مصرفی ST52
۷) ستونها از نوع کامپوزیت
 
این پروژه بصورت فشرده با حجم ۳۶۰ مگابایت در از لینک زیر قایل دانلود است
 

نحوه مدلسازی دیوار برشی فولادی در نرم افزار Etabs

در این فایل شما با دیوار برشی فولادی آشنا خواهید شد همچنین نحوه مدلسازی دیوار برشی فولادی در نرم افزار Etabs نیز تشریح گردیده است

دیوار برشی فولادی

دیوار برشی یک سیستم سازه ای است که وظیفه مهار کردن بارهای جانبی مثل زلزله و باد و … را بر عهده دارد .متداول ترین دیوار برشی که همه ما ان را دیده ایم دیوار برشی بتنی است اما حالت دیگری از دیوار برشی نیز وجود دارد که به آن دیوار برشی فولادی میگویند .

دیوار برشی فولادی دارای مزایایی چون سبک بودن و ارزان بودن و نصب سریع دیوار برشی فولادی همچنین جذب انرژی و شکل پذیری بالا است

دیوار برشی فلزی به عنوان یک سیستم مقاوم در برابر بارهای جانبی در سه دهه اخیر به سرعت در دنیا مورد توجه قرارگرفته وازاین سیستم برای ساخت و مقاوم‌سازی ساختمان‌ها ی مهمی دردنیا بویژه درکشورهای زلزله خیزی چون ژاپن وآمریکا استفاده شده است.

طراحی دیوار برشی فولادی در Etabs

 

 

طراحی دیوار برشی فولادی در Etabs

گزینه ی Section Cut در Etabs

استفاده از Section Cut برای دیدن نیروها یا تنش‌ها در المان‌های منتخب برنامه ETABS است. برای این منظور از مسیر Draw menu > Draw Section Cuts استفاده می‌شود.
1- ابتدا بایستی سازه را تحلیل نمایید. برای این منظور از مسیر Analyze menu > Run Analysis اقدام نمایید.
2- بعد از تحلیل برنامه بطور خودکار تغییرشکل سازه را در پنجره فعال نشان می‌دهد. روش دیگر استفاده از مسیر Display menu > Force/Stress Diagrams > Shell Stresses/Forces برای دیدن نمودار نیروها یا تنش‌ها در اعضا است.
3- از مسیر Draw menu > Draw Section Cuts برای دیدن نیروی مورد نظر در مقطع سازه، استفاده شود.
4- از یک سمت نمای نمایش داده شده کلیک چپ نموده و با استفاده از عمل Drag خطی مستقیم به طرف دیگر ترسیم کنید تا پنجره Section Cut ظاهر شود.
5- اگر به پنجره نمایش مدل نگاه کنید، مسیری که در آن Drag شده بصورت چشمک زن نمایش داده می‌شود.
6- بخش Section Cutting Line: در این بخش مختصات نقاط ابتدایی و انتهایی کلیک نشان داده می‌شود. می‌توانید این نقاط را در همین جعبه ویرایش نمایید و با زدن دکمه Refresh اطلاعات پنجره را بروز رسانی کنید.
7- بخش Load Case: در این بخش حالت باری که تحت آن، نیروها در حال نمایش هستند، نشان داده می‌شود.
8- بخش Objects to Include: در این بخش، بایستی مشخص نمایید، نیروهای چه موضوعاتی نمایش داده شود یا خیر. با تیک زدن هر کدام نیروهای آن موضوع نیز در نمایش برآیند نیروها نشان داده می‌شود. مثلا اگر دیوار برشی داشته باشید و تیک مربوط به دیوار را بردارید، نیروهای ستون‌ها نمایش داده شده و مثلا می‌توانید بگویید آیا 25% نیروی جانبی به قاب‌ها رسیده یا خیر.
9- بخش Resultant Force Location and Angle: مکان و زاویه برآیند نیروها نشان داده می‌شود.
10- بخش Integrated Forces: در این قسمت، مقادر برآیند نیروهای سمت چپ و راست مقطع نشان داده می‌شود. با هر با کلیک بر روی گزینه‌های Save Right Side Cut یا Save Left Side Cut نتایج تحلیل ذخیره شده و از مسیر Design menu >  Show Tables قابل مشاهده خواهد بود

 

@AlirezaeiChannel

باز کردن فایل ورژن های قدیمی ETABS در ورژن 2015

برای باز کردن فایل ورژن های قدیمی ETABS در ورژن 2015 فایل ETABSTran2013.zip را دانلود کرده سپس از حالت فشرده خارج نمایید و در مسیری که ETABS 2015 نصب شده است کپی کنید. بعد نرم افزار ETABS 2015 باز کرده و فایل قدیمی را باز کنید. ین روش دو مزیت دارد:1- بعضاً فقط فایل edb در دسترس است و نمی شود از Import استفاده کرد.2- فایل بدون ایراد تبدیل می شود به ورژن 2015 .(حتماً موقع Import مواجه شده اید با خطاهای خواندن فایل قدیمی با ورژن بالاتر).
برای دانلود این فایل از لینک زیر استفاده کنید:
https://wiki.csiamerica.com/download/attachments/15073780/ETABSTran2013.zip?version=1&modificationDate=1438111564272&api=v2
برای دیدن جزئیات بیشتر از لینک زیر استفاده شود:
https://wiki.csiamerica.com/display/etabs/ETABS+v7,+v8,+and+v9+Translator

خرابی پیش‌رونده progressive collapse

خرابی پیش‌رونده را می‌توان به عنوان یک واکنش زنجیره‌ای یا انتشار خرابی تعریف کرد که در آن تحت عللی خاص، صدمه موضعی در ناحیه نسبتاً کوچکی از سازه رخ می‌دهد و در شرایطی این صدمه موضعی، به بخش‌های دیگری از سازه گسترش‌یافته و در نهایت به خرابی کلی سازه، منتهی می‌شود؛ به عبارت دیگر بعضی مواقع خرابی محلی عضو، به صورت موضعی باقی نمانده و در کل سازه منتشر می‌شود، خطرات احتمالی و بارهای غیرعادی که می‌تواند موجب خرابی پیش‌رونده شود، شامل این موارد می‌باشند: خطای طراحی یا ساخت، آتش‌سوزی، انفجار گازها، اضافه‌بار تصادفی، تصادف وسایل نقلیه، انفجار بمب‌ها و غیره. چون احتمال وقوع این خطرات کم است، در طراحی سازه‌ای آن‌ها را در نظر نمی‌گیرند یا با اندازه‌گیری‌های غیرمستقیم به آن‌ها می‌پردازند. اکثر آن‌ها ویژگی کنش طی مدت زمان نسبتاً کوتاه را دارند و به پاسخ‌های دینامیکی می‌انجامند

درحقیقت در این نوع از گسیختگی که گسیختگی نامتناسب  نیز نامیده می شود نسبت خرابی اولیه به خرابی نهایی زیاد بوده و ایجاد گسیختگی موضعی در سازه می تواند منجر به گسیختگی پیشرونده در کل سازه و یا قسمت بزرگی از آن شود. طی این نیم قرن، آئین نامه ها و استانداردهای مختلفی سعی کردند که این موضوع را پوشش دهند، اما بیشتر آن ها به بیان عبارات کیفی بسنده کردند و کمتر راه حل های عملی ارائه دادند. خرابی پیشرونده رویدادی نسبتا نادر است که در آن بارهای غیرمتعارف آسیب موضعی را ایجاد می کنند و سازه بدلیل کمبود پیوستگی، شکل پذیری و نامعینی آسیب را پخش می کند در بسیاری از مواردی که گسیختگی پیشرونده گسترش پیداکرده، مشاهده شده است که تلفات جانی که در جریان پدیده گسیختگی پیشرونده به وجود می آید بسیار بیشتر از تلفاتی است که درهنگام اعمال بارغیرعادی اولیه به سازه رخ می دهد.

نکات مهم در طراحی سازه های فولادی مهاربندی همگرا و واگرا

1-     با توجه به اینکه یکی از نکات بحث برانگیز و مهم در زمینه سازه های فلزی کنترل ترکیب بارهای ویژه طرح لرزه ای (موضوع بند 10-3-6-1 و 10-3-4-4 در ویرایش جدید مبحث دهم) بوده است و با توجه به تغییراتی که در این زمینه در ویرایش جدید مبحث دهم دیده میشود، برای رعایت بهتر این ضوابط و البته رعایت اقتصاد در طراحی روش زیر جهت طراحی پیشنهاد میگردد:

 

برای این موضوع ضمن انتخاب آیین نامه AISC-ASD89 جهت طراحی و تعریف ترکیب بارهای عادی طراحی با توجه به ضوابط  مبحث دهم و در صورت نیاز آیین نامه 2800 (بدون در نظر گرفتن ترکیب بارهای تشدید یافته موضوع بند 10-3-4-4) سازه را در مرحله اول به صورت عادی طراحی میکنیم. در این مرحله سعی میکنیم که نسبت تنش در ستونهای مجاور دهانه بادبندی بیشتر از حد 0.7 نشوند. پس از این مرحله و مشخص شدن مقطع بادبندها و مقطع اولیه برای ستونها با توجه به اینکه احتمالاً در طراحی ستونهای دهانه بادبندی ضابطه بند 10-3-6-1 ب حاکم خواهد شد، به کنترل ضابطه این بند به صورت دستی (ترجیحاً با کمک نرم افزار اکسل ) میپردازیم. بر این اساس به طور مثال با کمک نرم افزار اکسل هر ستون دهانه بادبندی را میتوانیم جداگانه کنترل نماییم. برای این منظور میتوانیم در یک ستون اکسل مقدار سطح مقطع ستون را از بالا به پایین بر اساس مقدار به دست آمده در طراحی بنویسیم. در ستون دیگری هم سطح مقطع بادبند متصل به آن را مینویسیم. در ستون سوم زاویه بادبند متصل به ستون نوشته میشود. در ستون چهارم حاصلضرب سطح مقطع بادبند در سینوس زاویه ای که بادبند با افق میسازد نوشته میشود و در ستون پنجم مقادیر ستون چهارم به صورت تجمعی از طبقه بالا به پایین با هم جمع میشوند و البته در ضریب 1.25 هم ضرب میگردد. حال مقدار به دست آمده در ستون آخر را با مقدار سطح مقطع ستون در هر طبقه مقایسه میکنیم. اگر این مقدار بیش از مقدار سطح مقطع ستون باشد، مقطع ستون را در مدل نرم افزار به مقطعی بالاتر ویرایش میکنیم؛ به گونه ای که حداقل سطح مقطع به دست آمده در ستون آخر تامین گردد. اگر این مقدار کمتر از مقدار سطح مقطع ستون باشد ، ستون را میتوان تا مقدار به دست آمده کوچکتر اختیار کرد (به شرط آنکه نسبت تنش از یک بیشتر نگردد).اگر بیش از یک بادبند به ستون در هر طبقه متصل باشد باید برای آن بادبند نیز این فرآیند را تکرار کرده و مقادیر به دست آمده برای هر کدام از این بادبندها را با هم جمع نماییم و با سطح مقطع ستون مقایسه نماییم.  پس از این مرحله دوباره سازه را این بار تحت ترکیب بارهای تشدید یافته کنترل مینماییم. ترکیب بارهای تشدید یافته همان ترکیب بارهای عادی هستند که در آنها ضریب بار زلزله دو برابر شده است. بهتر است این ترکیب بارها به صورت جداگانه علاوه بر ترکیب بارهای عادی در مدل کامپیوتری معرفی شوند. در این حالت تنها ستونهای دهانه بادبندی را برای این ترکیب بارها مورد بررسی قرار میدهیم و تنها بخشی از نسبت تنش که مربوط به بارهای محوری است را مورد توجه قرار میدهیم. اگر در این فرآیند ستونی دارای نسبت تنش کمتر از یک شود میتوان مقطع آن را کوچکتر اختیار کرد و اگر نسبت تنش آن بیش از یک شود نیازی به بزرگتر شدن ندارد (این مساله با توجه به این موضوع است که ضابطه بند 10-3-6-1 ب در مرحله قبل در ستون رعایت گردیده است).

 

نکته: اگر در این فرآیند مقطع بادبندها به علت تغییر در سختیها و نحوه توزیع نیروها تغییرنماید فرآیند طراحی ذکر شده به صورت سعی و خطا باید دوباره تکرار شود.

 

2-     موضوع دیگری که بر اساس ضوابط ویرایش قبلی مبحث دهم لازم به رعایت بود، کاهش تنش مجاز فشاری در طراحی بادبندها بود که بر اساس ویرایش جدید مبحث دهم برای بادبندهای با شکلپذیری کم رعایت آن اجباری نیست و بر این اساس مقاطع به دست آمده برای بادبندها سبکتر از ویرایش قبلی خواهد شد.

 

3-     بر اساس ضوابط مبحث دهم در ویرایش قبلی جزدر موارد خاص لاغری بادبند به عدد 123 محدود میشد که بر اساس ضوابط جدید مبحث دهم نیازی به رعایت این ضوابط جز در مورد بادبندهای نوع چورون (بادبند نوع 7 یا 8) نیست و لاغری آنها تا عدد 200 میتواند افزایش یابد. در بادبندهای چورون محدودیت لاغری بادبند همانند ویرایش قبلی پابرجا میباشد.

 

4-     در صورت تمایل به استفاده از بادبندهای شورون لازم است که ضوابط بند 10-3-9-2-4 در مورد تیرهای متصل به این بادبندها رعایت گردد. هر چند بهتر است به مهندسان طراح توصیه گردد که حتی الامکان از این نوع بادبند استفاده ننمایند و تنها از بادبندهای قطری و ضربدری استفاده شود.

 

5-     بر اساس توصیه بند 10-3-9-2-3-2 بهتر است ضریب لاغری بادبندهای ضربدری برای کمانش در صفحه قاب به عدد 0.5 و جهت دیگر به عدد 0.7 در نرم افزار ویرایش شود. (البته خود نرم افزار طول مهارنشده این بادبندها برای کمانش در صفحه اصلی را به نصف کاهش میدهد و تنها لازم است ضریب دوم وارد شود). برای بقیه بادبندها ضریب یک قابل قبول است.

 

6-     با توجه به مندرجات بندهای 10-3-9-1-2 تا 10-3-9-1-6 در مورد تیرهای دهانه بادبندی و یا تیرهایی که به نوعی در فرآیند انتقال نیرو به بادبندها موثر هستند لازم است توجه خاصی به این تیرها و اتصالات آنها به ستون، بادبند و کفها بشود. بر این اساس توصیه میشود که:

 

- اولاً جهت جلوگیری از کمانش این تیرها در اثر بار محوری فشاری زلزله یا بال پایین آنها به نحوی مناسب به سقف متصل شود و یا برای این تیرها از مقطع دوبل استفاده شود

 

- ثانیاً  برای تامین اتصال بهتر بین تیر و دیافراگم سقف در سقفهای تیرچه بلوک و تیرچه کرومیت جهت اتصال تیر به سقف از برشگیر استفاده شود و در سقفهای کامپوزیت از برشگیرهای قویتر یا با فاصله کمتر استفاده شود. به جای آن میتوان ترتیبی اتخاذ کرد که تیر بتنی در داخل بتن سقف به صورت غرق در بیاید.

 

- ثالثاً برای این تیرها از مقاطع لانه زنبوری استفاده نشود.

 

7-     با توجه به ضوابط سختگیرانه اضافه شده در ویرایش جدید مبحث دهم در بند 10-3-6-3 در زمینه طراحی صفحه ستونها لازم است ضنت یادآوری لزوم رعایت این ضوابط به مهندسان طراح و مراجع کنترل نقشه، ترتیبی اتخاذ شود که برای صفحه ستونها از ورقهای ضخیمتر از 20 میلیمتر استفاده گردد و با توجه به نیاز به تعداد قابل توجهی بولت در ستونهای دهانه بادبندی توجه تحمل برش و کشش ایجاد شده در صفحه ستون، به جای آرماتور نوع AII آرماتور نوع AIII جایگزین گردد. همچنین جهت انتقال این نیروها از ستون و بادبند به صفحه توصیه میشود که سیم جوش E70 جایگزین سیم جوش E60 حداقل برای این اتصالات گردد.

 

8-     با توجه به ضوابط سختگیرانه ویرایش جدید در زمینه وصله ستونها (موضوع بند 10-3-6-2) لازم است موارد زیر مورد توجه قرار گیرد:

 

- اول آنکه   در زیر نقشه جزییات ستونها ممنوعیت وصله ستون در فاصله نزدیکتر از 1.2 متری بال بالای تیر طبقه پایین و بال پایین تیر طبقه بالا ذکر گردد.

 

-  دوم آنکه از تغییر مقطع هسته IPE ستون و ورقهای تقویت بال و جان ستون حتی الامکان اجتناب گردد و تنها در قسمتهایی که نیاز به مقطع ضعیفتر میباشد در طبقات بالا ورقهای تقویتی بال و جان حذف شوند (و نه اینکه عرض یا ضخامت ورق کاهش داده شود.) در هر صورت اگر به هر دلیل این امر امکانپذیر نشود باید دتایلی منطقی و اجرایی منطبق به ضوابط بند 10-3-6-2 در نقشه توسط طراح پیشنهاد گردد.

 

9- با توجه به اینکه بر اساس ضوابط ویرایش جدید مبحث دهم مقطع بادبندها و ستونهای دهانه بادبندی پایینتر از مقاطع به دست آمده به روش ویرایش قدیم مبحث دهم خواهد بود و با توجه به اینکه سختی سازه ربط مستقیم به مقطع بادبندها و ستونهای دهانه بادبندی دارد، به نظر میرسد که مقدار تغییر شکل جانبی سازه بیشتر خواهد شد و در این صورت لازم است که به طور جدی تغییر شکلهای جانبی سازه کنترل گردد.

 

9- با توجه به ضابطه بند 10-3-9-1-7 ضریب رفتار سیستم قاب ساده و مهاربند همگرای معمولی میتواند همانند قبل عدد 6 فرض شود.

 

10- در مورد سیستم قاب ساده و مهاربند واگرای با شکلپذیری معمولی، باید مطابق با ضوابط بند 10-3-10-3 عمل شود. بر اساس این بند رعایت ضوابط مهاربندهای همگرای با شکلپذریری معمولی به همراه ضوابط ذکر شده در بند مذکور کفایت میکند. بر این اساس باید به موارد زیر هم توجه گردد:

 

- برون محوری e در قاب برون محور نباید از یک پنجم طول تیر بزرگتر باشد.

 

- تیر دهانه مهاربند باید دارای شرایط مقطع فشرده باشد.

 

- تیر مهاربند باید بدون توجه به حضور بادبند بتواند بارهای ثقلی را تحمل نماید.

 

- یک جفت سخت کننده باید در ابتدا و انتهای اتصال عضو قطری مهاربند  در تیر اجرا شود.

 

- یک جفت سخت کننده در داخل تیر مطابق شکل های 10-3-11 مبحث دهم

 

- با توجه به اینکه ضریب رفتار این سیستم در مبحث دهم ذکر نشده است بهتر است در جهت اطمینان از همان ضریب 6 مربوط به مهاربندهای هممحور با شکلپذیری کم استفاده گردد.

منبع: وبلاگ شخصی مهندس احمدرضا جعفری

تحلیل دینامیکی افزایشی IDA - Incremental Dynamic Analysis

در این تحلیل، سازه تحت تاثیر یک سری از تحلیل های تاریخچه زمانی قرار می گیرد که شدت این تاریخچه زمانی ها به تدریج افزایش می یابد

در این روش مقدار شتاب ماکزیمم به صورت افزایشی از یک مقدار بسیار کم که در طی آن پاسخ سازه الاستیک است مقیاس شده و به تدریج افزایش می یابد تا به نقطه حالت حدی هدف پس از تسلیم برسیم. 

از معایب این روش پیچیدگی در استفاده از این روش آنالیز میباشد.

 

نرم افزار هایی که قادر هستند فرایند فوق را به صورت اتوماتیک و بسیار راحت انجام دهند عبارتند از Opensees وSeismo Struct

آنالیز تاریخچه زمانی غیر خطی RHA - Response History Analysis

•   به منظور تعیین عملکرد محتمل سازه تحت یک زلزله مشخص ، نتایج به دست آمده از این آنالیز می تواند به طور مستقیم با اطلاعات به دست آمده از آزمایشات بر روی نمونه های مولفه های سازه ای مقایسه شوند.
•   در این روش به طور مستقیم تغییر مکان کلی حداکثر که توسط یک شتاب نگاشت مشخص به سازه اعمال می شود، تعیین شده و احتیاجی به تخمین زدن این پارامتر نیاز بر پایه روابط تجربی – تئوریک نمی باشد.
• روشی پیچیده و در عین حال دقیق ترین روش برای ارزیابی نیازهای غیر الاستیک سازه تحت اثر شتاب نگاشت های حرکت زمین است.
 
•  در آنالیز تاریخچه زمانی، آثار مودهای بالاتر و تغییرات در الگوی بار اینرسی به علت نرم شدگی سازه در خلال زلزله به طور خودکار درنظر گرفته می شود. 
 
•  روش تحلیل دینامیکی غیرخطی برای تمام ساختمانها قابل استفاده است .
•   نتایج حاصل از این روش حساس به شتاب نگاشت انتخاب شده برای تحلیل و مدل رفتار غیر خطی مصالح و اجزاء سازه می باشد
•   این روش آنالیز وقت گیر و پیچیده می باشد
•   در نتیجه لازم است کنترل و تفسیر نتایج حاصل توسط افراد مجرب انجام گیرد . 
 

انواع تحلیل های غیر خطی

      به طور کلی برای سیستم هایی که انتظار می رود رفتار غیر خطی داشته باشند نیروها و تغییر شکل ها را می توان با استفاده از تحلیل های زیر به دست آورد: 

 

الف) تحلیل های دقیق

 -  تحلیل تاریخچه زمانی RHA               -  تحلیل دینامیکی افزایشی IDA

 

ب) تحلیل های ساده شده

   -تحلیل دینامیکی با استفاده از طیف پاسخ غیر خطیRSA    

 

  - تحلیل استاتیکی غیر خطیNSP

 

ج) تحلیل های تقریبی

مانند روش استاتیکی معادل که با در نظر گرفتن ضریب رفتار می توان به صورت تقریبی اثر رفتار غیر خطی را وارد نمود

راه حل های کنترل Drift

برای کنترل جابجایی نسبی طبقات در قاب خمشی بتنی موارد زیر را می‌توان بکار برد:
1- افزایش مقطع تیر و ستون. افزایش مقطع تیر معمولاً موثرتر هست ولی با افزایش مقطع تیر، از فلسفه تیر قوی ستون ضعیف دور میشیم.
2- منظم کردن سازه از نظر پیچشی. در این حالت می‌توان جابجایی را در مرکز جرم سازه ببینید. در غیر اینصورت باید در گوشه‌ها مشاهده شود.
3- افزایش مقاومت مشخصه بتن که با افزایش آن ضریب ارتجاعی نیز زیاد می‌شود.
4- استفاده از دوره تناوب تحلیلی برای کنترل جابجایی. این مورد معمولا در سازه‌های بالاتر از 5 طبقه موثر است.

 

بارهای خیالی NOTIONAL در Etabs

بارهای خیالی مرده و زنده چی هستند؟
ایا ضرورتی دارد که حتما اعمال شود؟
اگر ضرورت اعمال دارد چگونه در ایتبس عمل می کنیم؟

 

در روش تحلیل_مستقیم، بایستی بارهای فرضی  (خیالی) که برای لحاظ نمودن اثرهای خطای هندسی ساخت و اجرا اعمال می‌شوند، به میزان N=0.002Yi که در آن Yi بار ثقلی موجود در تراز iام است، تعریف شوند. در حال حاضر برنامه ETABS، ترکیب بارهای طراحی شامل بارهای ثقلی و بارهای فرضی را ایجاد می‌نماید. در آیین‌نامه‌های طراحی به روش حالات حدی به لحاظ نمودن اثرات ثانویه تاکید شده است. این بارها ضریبی از بارهای ثقلی هستند و در دو جهت اصلی سازه (مانند باز زلزله) اعمال می‌شوند. در هر دو روش تحلیل مستقیم و یا ضرائب طول از بارهای فرض استفاده می‌شود. اگر در سازه‌ای بارهای جانبی حاکم باشند، بارهای فرضی تاثیری در عملیات طراحی نخواهند داشت. بارهای فرضی بایستی مانند بارهای زلزله بصورت رفت و برگشتی معرفی شوند. در آیین‌نامه AISC360-05 در هر دو روش ضرایب طول و روش مستقیم، استفاده از بارهای فرضی لازم دانسته شده است. ضریب 0.002 نقشی به مانند بارهای زلزله دارد. در هر طبقه بارهای ثقلی در این ضریب ضرب شده و بطور جانبی بر سازه اعمال می‌شوند. در برنامه ETABS برای معرفی بارهای فرضی از دستور Define menu > Static Load Cases استفاده می‌شود. در ETABS 2016 بایستی از مسیر Define menu > Load Patterns اقدام شود.

 مطابق شکل زیر در بخش Load، یک نام دلخواه وارد نموده و در بخش Type، حالت NOTIONAL را انتخاب نمایید. مقدار Self-Weight Multiplier برای این حالت بار صفر و گزینه Auto Lateral Load را می‌توان در حالت Auto یا None انتخاب نمود. در صورتی که حالت Auto انتخاب شود، بارهای فرضی بطور خودکار توزیع شده و در حالت None بایستی بصورت دستی اعمال شود. در صورت انتخاب حالت Auto  می‌توان با استفاده از دکمه Modify Lateral Load (پنجره Auto Notional Load Generation  ظاهر شده) تنظیمات خودکار توزیع این بار را تعریف نمود. در بخش Notional Load Value و در قسمت Base Load Case بایستی یکی از بارهای ثقلی انتخاب شود. در قسمت Load Ratio ضریب بار فرضی معرفی شده و در بخش Notional Load Direction جهت اعمال این بار فرضی مشخص شود.
برای هر بار ثقلی بایستی دو حالت بار فرضی (یکی در جهت x و دیگری در جهت y) معرفی شود. اثر رفت و برگشتی بار در ترکیب بارها لحاظ خواهد شد.

 

منبع: کانال دکتر علیرضایی

 


Notional Loads are used by some building codes for the stability design of a structure. They serve as a minimum lateral load, or as an alternative to modeling the actual out-of-plumbness or out-of-straightness of the structure. Instead of changing the geometry of the structure, an equivalent de-stabilizing load is added to the structure. There are numerical benefits to handling this out-of-plumbness issue with loads rather than geometry. Essentially, it is quicker and easier to adjust the loading on a structure than it is to modify the stiffness matrix of the structure.

The implementation of these notional loads is not based on a single code, but on the concept of using lateral forces equal to a percentage of the applied vertical load at each floor level. Codes that may require the use of notional loads include the following: 

  • ASCE 7: A minimum lateral load of 1% of the Dead Load of the structure should be applied at each floor as a notional load.
  • AISC 360: A notional load to account for out-of-plumbness of the structure of 0.2% to 0.3% of the total gravity load (DL + LL) shoudl be applied at each floor as a notional load.
  • AS 4100: Has a default of notional load of 0.2%
  • NZS 3404: Has a default notional load of 0.2%
  • BS 5950: Has a default notional load equal to 0.5%
  • EC 1993-1-1: Has a notional load that can vary, but which will not normally exceed 0.5% of the applied vertical load

These notional loads are normally only assumed to act for load cases which do not include other lateral forces. However, the specific requirements of the individual code may require the use of these loads for other load cases depending on the sensitivity of the structure to stability effects.

Notional loads can only be automatically generated for diaphragm/floor levels. The program will automatically calculate the center of mass and use that point as the location to apply the Notional Loads.

 

نکاتی در نرم افزار ETABS

نکاتی در مورد ETABS:
برنامه ETABS در صورت استفاده از آیین‌نامه AISC360-05 یا بالاتر و انتخاب نوع قاب EBF موارد زیر را برای مهاربندهای واگرا کنترل می کند:
اگر تحت ترکیب بارهای معمولی نیروی محوری ستون‌ها از 0.4 ظرفیت فشاری یا کششی آنها فراتر رود، ترکیب بارهای ویژه تشدید یافته بایستی بدون حضور لنگر خمشی و نیروی برشی و تنها تحت اثر نیروی محوری کنترل شوند(AISC SEISMIC 8.3, 4.1).
مقاطع تیرها باید فشرده لرزه‌ای باشند (AISC SEISMIC 13.2d, 8.2b, Table I-8-1). در صورت عدم ارضای شرایط این جدول، پیام خطایی در خروجی اعلام می‌شود.
مقاومت برشی تیر پیوند باید از برش ضریبدار وارد بر آن بزرگتر باشد (AISC SEISMIC 15.2b). برنامه طراحی تیر پیوند را با استفاده از روابطی به مانند روابط مبحث دهم، کنترل می‌کند.
دوران تیر پیوند، نسبت به کل تیر دهانه بادبند واگرا از روی جابجایی نسبی طبقه (جابجایی کلی بالای ستون منهای جابجایی کلی پایین ستون) بدست می‌آید. برنامه دوران تیر پیوند را تحت بدترین ترکیب بار کنترل و گزارش می‌دهد.
تیر خارج از تیر پیوند بایستی برای 1.1Ry برابر مقاومت تیر پیوند طراحی شود (AISC SEISMIC 15.6b). برنامه این کنترل را انجام می‌دهد.
مقاطع ستون‌‌ها باید فشرده لرزه‌ای باشند (AISC SEISMIC 13.2d, 8.2b, Table I-8-1). در صورت عدم ارضای شرایط این جدول، پیام خطایی در خروجی اعلام می‌شود.
تمام مهاربندها بایستی فشرده باشند (AISC SEISMIC 10.4a, 8.2a, AISC Table B4.1). در صورت عدم ارضای شرایط این جدول، پیام خطایی در خروجی اعلام می‌شود.
مهاربندها برای 1.25 برابر ظرفیت برشی تیر پیوند طراحی می‌شوند. ابتدا نیروی محوری مهاربند که با 1.25 ظرفیت مورد انتظار تیر پیوند است بدست می‌آید. سپس نیروی حاصل جایگزین بار زلزله در ترکیب بارها شده و با اثر بارهای ثقلی جمع می‌شوند (ASIC SEISMIC 15.6a).
در طراحی ستون‌ها باید ترکیب بار ویژه‌ای که در آن ستون‌ها باید برای 1.1Ry برابر ظرفیت برشی تیر طراحی شود در نظر گرفته شود. ضریب 1.1 برای در نظر گرفتن اثرات سخت شوندگی کرنشی است.
برای مهاربندهای همگرا، فشردگی تیرها و ستون‌ها و مهاربندها و همچنین طراحی ستون‌ها با استفاده از ترکیب بارهای تشدید یافته صورت گرفته و طراحی ظرفیتی انجام نمی‌شود.

 

منبع: کانال آقای امین قلیزاده

بار زنده در ETABS

حداقل بار زنده پارکینگ 300kg/m2
Live (L)

✅حداقل بار زنده بام 150kg/m2 (در محاسبه جرم لرزه ای مشارکت ندارد)
Roof Live(Lr)

✅حداقل بار زنده فضا های عمومی ،لابی ها ،همکف ، اتاق پله و  عموما فضاهایی که بالای ۲۰نفر تردد دارند 500kg/m2می باشد (در کف این کاربری ها نیاز به اعمال معادل سربار زنده ناشی از پارتیشن ها نمی باشد،هرچند مساحت آنها در محاسبه سربار لحاظ می گردد. )
Reducible Live (RL1)

✅حداقل بار زنده فضاها و اتاق های خصوصی (انتخاب  کاربری فضای مورد بررسی به قضاوت مهندسی نیز بستگی دارد)200kg/m2  می باشد ،(این بار با ضریب 0.5 در ترکیبات بار لرزه ای شرکت خواهد داشت .)
Reducible Live (RL2)

✅نحو ه  و میزان اعمال بار پارتیشن ها بستگی به دتایل آنها دارد ، به این صورت که اگر وزن هر متر مربع  دتایل انها بیشتر از 2کیلو نیوتون بر متر مربع شود ؛ بار پارتشین  از نوع حالت بار مرده تعریف شده و باید در محل واقعی خود دیوار(با تعریف یک تیر در نرم افزار)  بر روی کف اعمال گردد . اما در صورتی که وزن دتایل انها کمتر از 2کیلو نیوتن بر متر مربع باشد باید معادل سر بار انها را حساب کرد که این معادل نیز دارای حداقل هایی  به شرح زیر می باشد : 

1-برای تیغه هایی که وزن هر متر مربع انها حداکثر 40kg  می باشد ،این حداقل 50kg/m2 می باشد .
2- برای تیغه هایی که وزن هر متر مربع انها بزرگتر از 40kg می باشد ، حداقل بار گستره معادل سربار زنده 100kg/m2 می باشد .
Live (LP) OR Dead (D)

✅در مورد تراز بام و بار برف  که از بارهای محیطی می باشد ، باید هم بار زنده بام و هم بار برف را  در نرم افزاز تعریف و در تراز بام اعمال کنیم ،فقط باید به این نکته توجه کرد که بار برف در تعریف جرم لرزه ای شرکت دارد،اما برای تعریف ترکیب بارها طراحی ، باید بزرگترین این بارها را لحاظ کرد .

آیین نامه های ارزیابی و بهسازی لرزه ای سازه

به منظور تحلیل غیر خطی سازه ها همواره دستورالعملها و آیین نامه های مربوط به تحلیل غیرخطی و بهسازی لرزه ای سازه ها و برای برخی مقاصد نیز استاندارد ۲۸۰۰ ایران مورد نیاز می باشد که می توانید آنها را دانلود نمایید.

 

دستورالعمل بهسازی لرز ه ای ساختمان های موجود (نشریه ۳۶۰)

تفسیر دستورالعمل بهسازی لرزه ای ساختمان های موجود (نشریه ۳۶۱)

راهنمای کاربردی دستورالعمل بهسازی لرزه ای ساختمان های موجود -ساختمان های فولادی ( نشریه شماره ۱-۳۶۳ )

راهنمای کاربردی دستورالعمل بهسازی لرزه ای ساختمان های موجود -ساختمان های بتنی ( نشریه شماره ۲-۳۶۳ )

راهنمای کاربردی دستورالعمل بهسازی لرزه ای ساختمان های موجود -ساختمان های بنایی ( نشریه شماره ۳-۳۶۳ )

دستورالعمل بهسازی لرزه ای ساختمان های بنایی غیرمسلح موجود  ( نشریه شماره ۳۷۶ )

راهنمای بهسازی لرزه ای پل ها  ( نشریه شماره ۵۱۱ )

راهنمای طراحی و ضوابط اجرایی بهسازی ساختمان های بتنی موجود با استفاده از مصالح تقویتی  FRP   ( نشریه شماره ۳۴۵ )

آئین کار طراحی ساختمانها در برابر زلزله ویرایش سوم ( استاندارد ۲۸۰۰ )

راهنمای روش ها و شیوه های بهسازی لرزه ای ساختمان های موجود و جزئیات اجرایی (نشریه شماره 524)

NEHRP GUIDELINES FOR THE SEISMIC REHABILITATION OF BUILDINGS - FEMA-273

PRESTANDARD AND COMMENTARY FOR THE SEISMIC REHABILITATION OF BUILDINGS - FEMA 356

 Improvement of Nonlinear Static Seismic Analysis Procedures - FEMA 440

Seismic Evaluation and Retrofit of Concrete Buildings - ATC40 - Volum1

Seismic Rehabilitation of Existing Buildings - ASCE - SEI 41-06

ASCE/SEI 41 Update

 

 

منبع: /perform.blogfa.com